Deuterium Nuclear Magnetic Resonance. Evaluation of the Positional Distribution of Low Levels of Deuterium in the Presence of Eu(fod)₃

Summary: ²H NMR spectroscopy, in conjunction with the shift reagent Eu(fod)₃, has been used to detect and quantify the positional incorporation of low levels of ²H in catalytically deuterated saturated carboxylic acid esters.

Sir: While ¹H NMR can be used effectively to determine the extent of ²H incorporation in organic molecules, it has severe limitations. First, ¹H NMR requires that the molecule under study contain high concentrations of ²H, since this technique can evaluate ²H only by difference. Secondly, when ²H is largely dispersed throughout a molecule even in relatively high total concentration, analysis becomes very difficult because of insignificant changes observed in the area of each of the dispersed ¹H resonances. As an alternate method, mass spectrometry can furnish information concerning the total level of isotopic incorporation; however, in most instances it cannot define the positional distribution of ²H owing to ²H-¹H scrambling during the fragmentation process.

Although two orders of magnitude less sensitive in response to a magnetic field than $^1\mathrm{H}$, the $^2\mathrm{H}$ nucleus is more amenable to Fourier transform methods. Under complete proton decoupling conditions, $^2\mathrm{H}$ resonances are normally observed as single resonances (no $^2\mathrm{H}-^2\mathrm{H}$ spin coupling is observed), having chemical shifts closely corresponding to their $^1\mathrm{H}$ counterparts. Also, because of their relatively short longitudinal relaxation time, T_1 , multiple transients may be rapidly accumulated with short repetition times. For example, a 100-mg sample of molecular weight of 200–300, containing 5% $^2\mathrm{H}$, which in magnetic response is equivalent to 0.05% $^1\mathrm{H}$, can yield an excellent quantitative spectrum within 0.5 h from 300 transients (repetition time only 5 s and a pulse angle of 60°).

²H NMR in the presence^{2,3} and absence^{4,5} of lanthanide shift reagents can be used to examine positional substitution patterns in both static and rapidly exchanging ¹H, ²H systems. Such a technique seemed amenable to our studies concerning the catalytic incorporation of ²H into the saturated alkyl chains of carboxylic acids, since no other approach could quantify and evaluate the positional distribution of the low levels of widely dispersed ²H. Typically, not more than a total of 29%, and in some cases as little as 2%, ²H was incorporated into our representative samples. All ²H spectra were obtained by use of a ³¹P 10-mm probe of a JEOL FX-60Q NMR spectrometer,⁶ which normally operates at 24 MHz with a ²H lock channel of 9.2 MHz. By reversing the offset/rf power modules and exchanging the lock and observation lines, we could lock

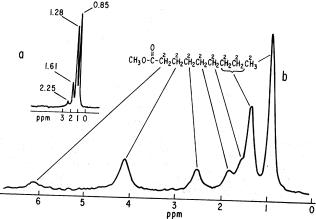


Figure 1. 2 H spectrum of: (a) methyl nonanoate, 255 transients, 4.4-s repetition rate, displayed spectral width = 500 Hz, 4K data points; (b) methyl nonanoate in the presence of Eu(fod)₃ shift reagent, molar ratio of Eu(fod)₃/substrate = 0.7, 200 transients, 4.4-s repetition rate, displayed spectral width = 62.5 Hz. Total 2 H content = 29%.

Table I. Observed $^1\mathrm{H}$ and $^2\mathrm{H}$ Shifts (ppm) and $^2\mathrm{H}$ Positional Distribution and Content a

Table I. Ol	oserved 1	H and H	Simus (ppin, and 1	Positional Di					
		$\mathrm{CH_{3}OCCH_CH(CH_{2})_{x}R''} \ \mathrm{R} \ \mathrm{R'}$								total %
	sample size, g	$_{ m CH_3}$	2-CH ₃	3-CH ₃	$(CH_2)_x$	2-CH ₂	3-CH ₂	2-CH	з-СН	² H
nethyl nonanoate	one, a	0.86		¹ H shifts (δ)	1.25	2.30	1.6°			
$R = R' = H; R'' = CH_3; x$ = 5 nethyl 2-methyloctanoate		0.90	1.16		1.30			2.42		
$R = R'' = CH_3$; $R' = H$; $x = 4$ nethyl 3-methylpentanoate		0.86		0.90	1.28	2.10			1.90	
$R = R'' = H; R' = CH_3; x$ = 1 limethyl 1,7-heptanedioate					1.30	2.30	1.50			
$R = R' = H; R'' = CO_2CH_3; x = 5$				² H Shifts ($\delta)^d$ 1.28	2.25	1.61			29
methyl nonanoate	0.085	0.85 (0.35)			$(0.10)^e(0.39)^f$ 1.26	(0.03)	(0.13)	nf		8
methyl 2-methyloctanoate	0.128	0.85 (0.61)	1.08 (0.24))	(0.15) nf	nf			nf	12
methyl 3-methylpentanoate		0.90 (0.68)		$0.90 \\ (0.32)$	1.30^g	2.25^{h}	1.50^{i}			8
dimethyl 1,7-heptanedioate	0.096				(0.39)	(0.15)	(0.46) w Numbe			

^a Content given as total percent deuterium incorporation determined by mass spectrometry. Numbers in parentheses represent the fractional distribution of ${}^2\mathrm{H}$ found from the Eu(fod) ${}_3$ spectrum. All proton shift assignments were in agreement with those reported in the Aldrich Catalog of proton NMR spectra. ^b Shifts were recorded in CCl₄ relative to internal Me₄Si. ^c Not clearly resolved at 60 MHz. d Shifts were recorded in CCl₄ and reported relative to 2% internal CDCl₃ referenced as 7.25 ppm. nf = no deuterium found at these positions. ^e Represents the 4-CH₂ position. ^f Represents 5- through 8-CH₂ positions. ^g Represents only the 5-CH₂ position. h Represents 2- and 8-CH₂ positions. i Represents 3-, 4-, 6-, and 7-CH₂ positions.

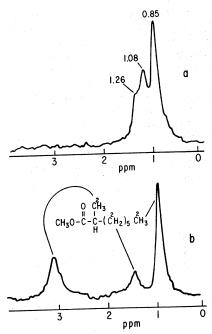


Figure 2. ²H spectrum of: (a) methyl 2-methyloctanoate, 200 transients, 4.4-s repetition rate, displayed spectral width = 125 Hz, 8K data points; (b) methyl 2-methyloctanoate in the presence of $\mathrm{Eu}(\mathrm{fod})_3$ shift reagent, molar ratio of Eu(fod)₃/substrate = 0.25, 208 transients 4.4-s repetition rate, displayed spectral width = 125 Hz. Total ²H content = 8.7%.

onto the $^{31}\mbox{P}$ resonance of $H_3\mbox{PO}_4$ in a 1.8-mm capillary tube secured in the center of the 10-mm tube with a drilled out vortex plug and observe ²H at 9.2 MHz.⁷

Table I lists the ¹H and the corresponding ²H shifts observed for the methyl esters derived from catalytically deuterated carboxylic acids. Total percent ²H incorporation into the esters was determined by mass spectrometry and the positional distribution by ²H NMR. Figure 1a shows the ²H spectrum of methyl nonanoate with 29% $^2\mathrm{H}$ incorporation in the alkyl chain. In this spectrum the 2- and 3-methylene and terminal methyl 2H resonances were clearly defined, whereas the remaining ²H in the chain are seen as a single resonance. Although this spectrum was obtained at only 9.2 MHz, it illustrates the separation which is achievable from single line resonances in the absence of couplings. Note that the 3-position 2H is readily distinguished, whereas the corresponding ¹H spectrum yields only a broad shoulder. A predominance of incorporation is apparent in the terminal methyl group, while the 2 position appears to have a low concentration. In the presence of shift reagent [Eu(fod)3] (Figure 1b), the distribution of ²H throughout the chain is easily ascertained (Table I). While such a separation was obtained for a ¹H spectrum of this ester in the presence of a shift reagent,8 it was not posssible to quantify the low levels of ¹H depleted in each resonance peak. Figure 2a shows the ²H spectrum of methyl 2-methyloctanoate, Figure 2b the corresponding spectrum in the presence of Eu(fod)₃ shift reagent. The latter spectrum clearly demonstrates the presence of ${}^{2}\mathrm{H}$ in positions 3 to 7 and the terminal and 2-position methyl groups of this carboxylic ester. No resonance corresponding to the 2-methine ²H was observed. A predominance of incorporation is seen in the terminal methyl group resonances, which separate from the 2-methyl group under the influence of shift reagent (Figure 2b). Figures 3a and 3b illustrate the exclusive substitution of ²H in the 3-methyl and terminal methyl groups of methyl 3-methylpentanoate and the dramatic resolution obtainable with the shift reagent. Dimethyl 1,7-heptanedioate exhibits

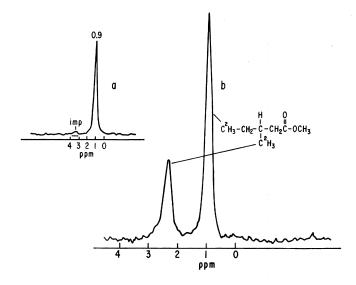


Figure 3. 2 H spectrum of: (a) methyl 3-methylpentanoate, 428 transients, 4.4-s repetition rate, displayed spectral width = 500 Hz, 8K data points; (b) methyl 3-methylpentanoate in the presence of Eu(fod)₃ shift reagent, molar ratio of Eu(fod)₃/substrate = 0.25, 400 transients, 4.4-s repetition rate, displayed spectral width = 125 Hz. Total 2 H content = 12.6%.

a somewhat broadened spectrum in the presence of Eu(fod)₃ because of the increased molecular weight and longer T_1

values of the double coordination site complex. However, the ²H distribution for three distinct regions along the chain was still evident (Table I).

A full report concerning the catalytic procedures used for the ²H exchange reactions into various compounds and their analyses by mass spectrometry and ²H NMR spectroscopy will be the subject of future publications.

References and Notes

- (1) For a comprehensive review of the most recent work in ²H NMR spectroscopy see: H. H. Mantsch, H. Saito, and I. C. P. Smith in "Progress in Nuclear Magnetic Resonance Spectroscopy", J. W. Emsley, J. Feeney, and L. H. Sutcliffe, Ed., Pergamon Press, London, 1977.
- (2) J. B. Stothers and C. T. Tan, J. Chem. Soc., Chem. Commun., 738 (1974).
- (3) A. L. Johnson, J. B. Stothers, and C. T. Tan, Can. J. Chem., 52, 4143 (1974).
- (4) T. P. Pitner, J. F. Whidby, and W. B. Edwards III, Anal. Chem., 49, 674 (1977).
- (5) D. E. Cane and S. L. Buchwald, J. Am. Chem. Soc., 99, 6132 (1977).
- (6) Reference to brand or firm name does not constitute endorsement by the U.S. Department of Agriculture over others of a similar nature not mentioned.
- (7) This modification is available through JEOL, Inc., Cranford, N.J. 07016.
- (8) D. B. Walters, Anal. Chem. Acta, 60, 421 (1972).
- (9) JEOL Inc., Cranford, N.J. 07016.
- (10) Federal Research, Science and Education Administration, U.S. Department of Agriculture.

Philip E. Pfeffer,* Thomas A. Foglia Patricia A. Barr, Ralph H. Obenauf⁹

Eastern Regional Research Center¹⁰ Philadelphia, Pennsylvania 19118